

Mumbai India

Occupational Exposure to Pesticides And Neurobehavioral Outcomes: Impact Of Different Exposure Measures on the Association

> Asst. Prof. Samuel Fuhrimann Head Research Group: Agricultural Health Swiss Tropical and Public Health Institute

> > Symposium O4A3, 16.3.2023

# Conflict of interest and funding

No conflict of interest

Funding:

Part of the IMPRESS Study funded by Croplife Europe

(www.impress-project.org)

Firewall between funder and researchers via independent Scientific Advisor Board











## Content

1. PESTROP Study with smallholder farmers in Uganda

2. Different measures on how to assess self-reported pesticide exposure

3. Observed exposure-health associations

PESTROP Pesticide use in Tropical settings



## Study design

- Longitudinal study of 253 smallholder farmers (2017 and 2019)
- Conventional and organic smallholder farmers
  - Farm size less then 20 ha
  - Subsistence farmers
  - Sell in the local and regional markets;
  - Grow: beans, maize, sweet potatoes, banana, cassava, coffee, tomatoes, and groundnuts
- Study protocol: Fuhrimann S, et al.. JMIR Res Protoc 2019
- KAP of pesticide handling: Staudacher et al. 2020 Environmental Health Insights
- Pesticides in air: Fuhrimann et al. 2020 Chemosphere
- Information seeking behavior: Diemer et al. 2020 Journal of Cleaner Production
- Etc.



Mumbai India

# 11 Neurobehavioral tests covering five neurocognitive domains

Language, memory, attention, executive function, and motor function



# Cognitive function impaired due to glyphosate exposure





Environment International 152 (2021) 106477

Contents lists available at ScienceDirect
Environment International
journal homepage: www.elsevier.com/locate/envint

Exposure to multiple pesticides and neurobehavioral outcomes among smallholder farmers in Uganda

Samuel Fuhrimann<sup>a,\*</sup>, Andrea Farnham<sup>b,c</sup>, Philipp Staudacher<sup>d,e</sup>, Aggrey Atuhaire<sup>f</sup>, Tiziana Manfioletti<sup>b,c</sup>, Charles B. Niwagaba<sup>g</sup>, Sarah Namirembe<sup>f</sup>, Jonathan Mugweri<sup>f</sup>, Mirko S. Winkler<sup>b,c</sup>, Lutzen Portengen<sup>a</sup>, Hans Kromhout<sup>a</sup>, Ana M. Mora<sup>h,i</sup>

| Neurobehavioral outcome                   | MIP  |
|-------------------------------------------|------|
| BVRT (scores)                             | 0.18 |
| Finger tapping dominant hand (scores)     | 0.29 |
| Trail making A log10 (minutes)            | 0.31 |
| Finger tapping non-dominant hand (scores) | 0.42 |
| Digit symbol (scores)                     | 0.45 |
| Semantic verbal fluency (scores)          | 0.50 |



Mumbai India

**Registration required** 

There are different ways to assess pesticide exposure...

How can a exposure contrast be established in a smallholder farming population in Uganda?



## Literature review on pesticide exposure assessments in occupational epidemiological studies



(Ohlander et al. 2020)

## Proportion of exposure assessment methods reported in the 1'298 papers



## Uganda smallholder spray in median 9 days per year (IQR 26) → Glyphosate and Mancozeb chosen



## Exposure intensity scores (EIS)

#### • Exposure-intensity score (EIS) for an average application =

(mixing + application)x frequency of PPE usex change of clothsx shower after application

|     | Mixing | Spray | PPE  | Change | Shower | Total EIS |
|-----|--------|-------|------|--------|--------|-----------|
| Min | 5      | 8     | 0.14 | 0.7    | 0.7    | 0.89      |
| Max | 5      | 8     | 1    | 1      | 1      | 13        |

#### Cumulative yearly EIS

**Year EIS** = Exposure-intensity score x total yearly application days

Variability and predictors of weekly pesticide exposure in applicators from organic, sustainable and conventional smallholder farms in Costa Rica

Samuel Fuhrimann ( $^{0}$ , <sup>1</sup> Philipp Staudacher ( $^{0}$ , <sup>2,3,4,5</sup> Christian Lindh ( $^{0}$ , <sup>6</sup> Berna van Wendel de Joode ( $^{0}$ , <sup>7</sup> Ana M Mora ( $^{0}$ , <sup>7,8</sup> Mirko S Winkler ( $^{0}$ , <sup>4,5</sup> Hans Kromhout ( $^{0}$ )

### Exposure intensity scores (EIS)



# Exposure measures used to characterize glyphosate and mancozeb exposure

Original exposure measures based on information collected in 2017 indicating exposure for the previous year:

- 1. Application status (yes/no)
- 2. Number of application days
- 3. Average exposure-intensity scores of an application (EIS) derived from a semiquantitative exposure algorithm and
- 4. Number of EIS-weighted application days.

Recalled information collected in 2019 resulted in two additional measures:

- 1. Re-called application status and
- 2. Re-called EIS.

## Associations for glyphosate application days per year and EIS adjusted application days with different neurobehavioral outcomes

#### Neurobehavioral outcomes



**Multiple regression analysis adjusted for confounders (sex, age, education, alcohol, head injuries, HIV)** Continuous exposure assessment measures (#3-6) were normalized on a scale between 0 and 1 (x - min(x)) / (max(x) - min(x)) before the analysis. App = application (yes); R = Recall; EIS = exposure-intensity scores.

## Null findings for mancozeb exposure measures



Finger tapping non-dom. hand (scores) Semantic verbal fluency (scores) Trail making A (minutes)

#### Multiple regression analysis adjusted for confounders (sex, age, education, alcohol, head injuries, HIV)

Continuous exposure assessment measures (#3-6) were normalized on a scale between 0 and 1 (x - min(x)) / (max(x) - min(x)) before the analysis. App = application (yes); R = Recall; EIS = exposure-intensity scores.

## Three take home messages

- The relation between different self-reported glyphosate exposure measures and neurobehavioral test scores appeared to be robust.
- 2. When based on recalled exposure measures, positive associations were no longer present.
- **3.** Future epidemiological studies on self-reported exposure should critically evaluate the potential bias towards the null in observed exposure-response associations.



UNACOH "Health for All & By All"



Asst. Prof. Samuel Fuhrimann Swiss Tropical and Public Health ICOH Institute samuel.fuhrimann@swisstph.ch Symposium O4A3, 16.3.2023 Open Positions at Swiss TPH Thank you Research Assistant / Scientific Collaborator 60 – 100% PhD Student in Epidemiology 80 – 100% to join the Agricultural Health Group > Jetzt bewerben > Jetzt bewerben